METHOD OF DETERMINING THE ULTIMATE DYNAMIC
COMPRESSION PATTERNS FOR SOILS AND POROUS
MEDIA RESPONSIVE TO THE STRAIN RATE

A. I. Kotov and G. V. Rykov UDC 624.131 +539.215

For media of the type of soils which are responsive to the strain rate, the questlon of determining the
ultimate dynamic compression patterns corresponding to an instantaneous loading (a o) [1, 2] is essential. Up
to now such patterns have been determined on the front of a shock being propagated in a soil mass during the
explosion of high-explosive charges [3-5] or during impact of a mass having a sufficiently high initial velocity
on a soil specimen [6]. The method mentioned cannot be used during continuous compression-wave propaga-
tion in soils.

The relation between the uniaxial compression (tension) pattern and the propagation velocity for weak
perturbations [7, 8] was used for elastic and elastoplastic media with nonlinear characteristics in order to de-
termine dynamic tension patterns.

§1. The method under consideration is based on the relationship between the propagation velocities of
weak perturbations in a compressed medium and the ultimate dynamic pattern ¢ (€) (€ =) in a viscoplastic
medium. It is assumed that the fundamental properties of the soils and the porous media being considered un-
der short-lived dynamic loads are described sufficiently accurately when subjected to uniaxial compression by
a strain law of the type [9, 10]
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where o, is the greatest principal stress; E(€) is the variable strain modulus under loading (30,/9t= 0); E«(€)
is the variable strain modulus under unloading (3¢/8t< 0); G > 0 for o;> f(€) and G=0 for oy=f(€); £(e) is
the statistical compression pattern for € =0.

For Ex (€)=E(€), the relation (1.1) agrees with the strain law examined in [11, 12]. An analogous model
was examined in [13] in application to explosive wave propagation in soils. In particular, it follows from {9, 13]
that the relationship between the propagation velocity of small perturbations a (€) and the ultimate dynamic
pattern ¢ (€)(€ =) is determined by the relationship

E(e) = do(e)/de = peal). (1.2)

By integrating, we obtain the ultimate dynamic pattern from (1.2):

P (5) = f E(E) dt, é = OOy (1-3)
)

For the strain law (1.1), the relationship (1.3) will correspond to the loading condition (8¢, /8t = 0). For -
unloading (80 /9t < 0) and for o ; <f(€) we analogously obtain

P (2 24) = 01, + | Eu (B) &,

where o4, €+ are the stress and strain achieved at the time when the condition o; =f(€) is satisfied.
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Therefore, by knowing the dependence a (€) from experiment, the ultimate dynamic pattern ¢ (€) (:‘: =00)
under loading as well as the pattern ¢, (€, € ) for oy <f(€) can be constructed.

However, one circumstance must be noted. If has been shown in [i14] that for a strain law of the type
(1.1), a situation is possible where weak discontinuities are not propagated at the velocity of the characteris-
tics (the case of almost self-similar motion). At the same time, it follows from [14] that such a finite distance
X4 can always be found when weak perturbations will be propagated at the velocity a (€) for x < xx.

Therefore, for a sufficiently small specimen height h, the propagation velocity of weak perturbations will
always equal the characteristic velocity. K hence also follows that such a method may turn out to be unsuitable
for long rods from materials possessing viscous properties [8].

§2. To determine the dependence a (€) under laboratory conditions, a specimen of material is subjected
to static loading by a load o, which is varied in steps (i=1, 2,..., n).

The static strain € and the corresponding time t; =t(€;) for a wave of weak discontinuity to traverse a
distance equal to the specimen height after a previous loading hj=h(€;_;) are hence determined. For a suf-
ficiently low specimen height the propagation velocity of a wave of weak discontinuity is defined as the mean

a(e)) = hifty, i =1, 2,00, B

Results of investigating the ultimate dynamic compression patterns of sandy soil with the volume weight
of the skeleton y4= 1.50 g/cm?® and the humidity w=0.003 and of foam plastic of the type PKhV with the volume
weight v(=0.07 g/cm3 tested in an apparatus described earlier in [2] are presented.

To measure the traversal time t(€{) some changes were introduced in the apparatus. In particular, piezo-
transducers on the basis of a TsTS-19 ceramic, whose signals were recorded on an S1-33 electronic oscil-
lograph, were mounted in place of the piston and base (central) strain gauges. The piston sensor had been con-
structed in the form of a moving module which could be displaced under impact by generating a wave of weak
discontinuity in the specimen. This weak perturbation was produced for each value of £€; because of impact of
a 100-g ball falling on the module with the sensor. The weight of the moving module with the sensor was also
100 g. The ball fell from a height of 1-2 cm.

Oscillograms of signals characterizing the perturbation in a sandy soil specimen, as recorded by the pis-
ton 1 and base 2 sensors, are represented in Fig. la, b. The scale division on the oscillograms is 75 1078
sec (Fig. 1a) and 30- 10‘6 sec (Fig. 1b). The corresponding values of the traversal time and the velocity a (2)
for 04,=0 (Fig. 1a) are t(0) =139 10~sec, and a (0) =215 m/sec, while for oy, =283 kgf/cm’ (Fig. 1b), t(€p) =
16.5-107¢ sec, a (€y) =1810 m/sec. The nature of the perturbations recorded in the foam-plastic specimens is
analogous.

Appropriate experimental results for sandy soil (Fig. 2) and foam plastic (Fig. 3) are represented in
Figs. 2 and 3. Plotted along the horizontal is the strain € and the stress o, and velocity a (¢) along the vertical.
The points and curves 2 hence correspond to a (€) and 3 to the static compression pattern f(€) obtained at the
strain rate €= 2.5+107* sec~! for sand and €= 2.5" 107° ! for the foam plastic. Points 4 in Fig, 2 cor-
respond to the velocities ax(€) for oy < f(€). The dependences a(€) and f(€) are approximated by the following
formulas: .
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for sand
ale)a(0) =1 -+ mee, 0 < e < gy @.1)

a(e)lale) =[1+m(e—e)™]'" & <e<L 012
fle)==K(e+mpe™), 0<Le<<0.13;

@2.2)

for foam plastic
a(e)la(0) =1—mpe", 0<e<0.50; 2.3)
flo =1 Osesei 2.9

lo [1 4+ m, (e —e)™*], £, <e<0.70.

where g (0) =200 m/sec; my=37; a (€ ) =350 m/sec; €,=0.02; m,;=364; v,=1.0; K=550 kgf/em’; m, = 155; v, =3,0
in (2.1) and (2.2), while a (0) =1125 m/sec; m;=0.89; v,=0.36; £5=0.0346; og=4.5 kgf/em?; K=130 kgf/cm?;
my=2.30; vy =0.46 in (2.3) and (2.4).

The ultimate dynamic patterns (curves 1 in Figs. 2 and 3) are obtained from (2.1) and (2.3) in the follow-
ing form by taking account of (1.3):

for sand
0 6) = g [ 2?11, 0<e<en
O, - El[s— gy +m(e— &) ] g <<e<L 012,
where E;=608 kgf/cm’; m =182; v =2.0; E;=1880 kgf/cm?; 0,=23.2 kgf/cm’ and

for foam plastic

m2
2 : ! :
fP(s)on( e e )

where E(=1000 kgf/cm?,

It is interesting to note the qualitative distinction in the nature of the pattern ¢ (€) (E=w) for sandy soil
and for foam plastic. In the first case, the velocities a (€) grow with the increase in €, while the condition
d% /de 2> 0 holds for ¢ (¢). For foam plastic a(€) decreases with the increase in € and d%p/de %< 0 correspond-
ingly (within the limits of the measured values of the stress).

The difference in the values of the propagation velocities of weak perturbations ax (€) during unloading
froma(€) during loading for the very same values of the strain € (points 4 in Fig. 2) indicates that E, (€)= E(€)
in a strain law of the type (1.1).

The results obtained confirm the data elucidated earlier in [2] about the substantial influence of the strain
rate on the compressibility of sandy soils under short-lived loads.

Still more significant does the influence of the strain rate turn out to be on the compressibility of foam
plastic for which the difference in the strains for € =« and € =2.5- 1073 sec™! reaches 10-15-fold (for o4=10-
12 kgf/cm?),
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SHIELD PROPERTIES OF A THIN PLATE UNDER HIGH-
VELOCITY IMPACT

L. A. Merzhievskii and V. M. Titov UDC 628.198.624

In perforating a thin plate (shield) a high-veloeity particle (meteoroid) is shattered as the result of the
wave processes which are generated within it. During the course of its deformation a velocity field arises in
the particle; this field has a nonzero component perpendicular to the impact direction, so that the trajectories
of the debris particles are at various angles to the trajectory of the particle; these debris particles then im-
pact a target plate, placed behind the shield, over a much larger area than the cross-sectional area of the
particle. This, together with the loss in momentum of the particle as it perforates the shield, determines the
protective effect of the shield.

The process involved in the deformation and shattering of the particle in its collision with the shield was
considered in [1]. Tn this paper we justify, based on the experiments conducted in {1}, 2 method of quantita-
tively estimating the damage inflicted on the obstacle (target) protected by the shield. The method employed for
accelerating steel spheres was described in [2]. In all our experiments we permitted a pressure of up to 1 mm
Hg in the space between the shield and the target. ‘ ‘

It is difficult to give a general description of the problem involving perforation of a shielded target, since
the mechanism involved in explaining the target damage changes when the distance S between the target and
the shield is varied. When S is small the impact onto the target is due to a nondiffuse (compact) debris cloud
from a still deforming particle; as S increases, however, the damage to the target results in increasing mea-
sure, from the impact of the coarsest particles present in the concentrated debris field. It is necessary, there-
fore, to estimate the applicable interval over which the quantity S;=8/d, where d, is the diameter of the impact-
ing particle) varies corresponding to a given one of these target damage mechanisms. When the target chosen
is thick (semiinfinite), we can use, as a quantitative measure of target damage and, hence also, of shield effec-
tiveness, the depth h of the largest of the craters formed in the target.

The experimental results obtained are shown in Fig. 1 in terms of a set of curves showing h;=h/d,
plotted against S,; curve 1 corresponds to an impact of aluminum on aluminum with § /dg= 0.3 (8 is the shield
thickness); curves 2, 3, and 4, with 6/d0=0.2, 0.6, and 0.67, respectively, correspond to impacts of steel onto
D16. Here and henceforth, the first-named material corresponds to that of the particle and the second-named
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